Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cheng-Xia Tan, ${ }^{\text {a }}$ Jian-Ming Gu, ${ }^{\text {b }}$ De-Long Shen, ${ }^{\text {c }}$ Jian-Quan Weng $^{\text {c }}$ and De-Fang Fan ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China, ${ }^{\text {b }}$ Analysis Center, Zhejiang University, Hangzhou 310028, People's Republic of China, and ${ }^{\text {c }}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: fandefang@zj.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.064$
$w R$ factor $=0.193$
Data-to-parameter ratio $=8.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(5-Ethyl-2-methyl-4-nitro-2H-pyrazole-3-carbonyl)oxazolidin-2-one

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}$, shows an orthogonal relationship between the five-membered rings.

Comment

Derivatives of pyrazolyl heterocycles have high potential for biological activity and, as such, these derivatives have been widely used as pesticides and fungicides (Grenda et al., 1965). As a continuation of our work on the structure-activity relationship of pyrazolyl heterocycle derivatives, we have obtained a colourless crystalline compound that was the product of the condensation reaction of 3-ethyl-4-nitro-1-methyl-5-pyrazolecarboxylic acid chloride and 2-oxazolidinone.

(I)

The structural identity of the product, (I) (Fig. 1), has been established crystallographically. An inspection of the geometric parameters collected in Table 1 indicates that there is considerable delocalization of π-electron density over the pyrazole ring. This is also true, at least for the heteroatoms, in the oxazolidin-2-one moiety. However, this delocalization does not extend over the entire molecule, as seen in the dihedral angles formed between the central C5/C4/O3/N1 link and the five-membered pyrazole [planar to 0.014 (3) \AA] and oxazolidin-2-one rings [planar to 0.079 (4) \AA] of 89.2 (2) and $11.2(2)^{\circ}$, respectively, and this fact is emphasized by the orthogonal relationship between the rings [dihedral angle $=$ $\left.90.0(2)^{\circ}\right]$.

Experimental

3-Ethyl-4-nitro-1-methyl-5-pyrazolecarboxylic acid chloride $(2.4 \mathrm{~g}$, 11 mmol ; Okada et al., 1989) was added dropwise to a dichloromethane solution (30 ml) containing 2-oxazolidinone $(0.87 \mathrm{~g}$, 10 mmol), prepared according to the procedure of Homeyer (1946), and thiethylamine ($1.2 \mathrm{~g}, 12 \mathrm{mmol}$). The mixture was stirred for 6 h , poured into ice-water and extracted with dichloromethane. The dichloromethane layer was washed with an aqueous solution of sodium carbonate, water and a saturated aqueous solution of sodium chloride. After drying over anhydrous sodium sulfate, the solution was concentrated under reduced pressure. The residue was then recrystallized from ethanol, giving colorless blocks (m.p. 414-415 K).

Received 17 May 2004
Accepted 20 May 2004
Online 29 May 2004

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}$
$M_{r}=268.23$
Monoclinic, $P 2_{1} / n$
$a=15.2175(3) \AA$
$b=5.2970(1) \AA$
$c=15.8185(3) \AA$
$\beta=104.893(4)^{\circ}$
$V=1232.25(4) \AA^{3}$
$Z=4$
$D_{x}=1.446 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9126
\quad reflections
$\theta=1.7-27.5^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293(1) \mathrm{K}$
Block, colorless
$0.30 \times 0.24 \times 0.14 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: none 10185 measured reflections 2703 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.193$
$S=1.00$
1541 reflections
184 parameters

Figure 1

The molecular structure of (I), shown with 50% probability displacement ellipsoids.

The H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$ for methyl and methylene H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku and Rigaku/MSC, 2000-2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Grenda, V. J., Jones, R. E. \& Gel, G. (1965). J. Org. Chem. 30, 259-261.
Homeyer, A. H. (1946). US Patent No. 2399118.
Okada, I., Okui, S., Yamaura, M. \& Takahashi, Y. (1989). European Patent No. 0365 925, 4-6.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku \& Rigaku/MSC (2000-2004). CrystalStructure. Versiom 3.6.0. Rigaku/ MSC, 9009 New Trails Drive, The Woodlands TX, 77381-5209, USA, and Rigaku Corporation, Tokyo, Japan.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

